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Dark Future for Al
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Al lets us break things ...

Cheaper




Ethical principles for medicine

Beneficence: do good

Non-maleficence: do no harm

Autonomy: informed consent, no deception ...
Justice: fairness, discrimination, inequality ...
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Ethical principles for Al

Beneficence: do good

Non-maleficence: do no harm

Autonomy: informed consent, no deception ...
Justice: fairness, discrimination, inequality ...

Precautionary principle: beware of unknowns ...



Beneficence

New procedures should do good
Bring net benefits (utilitarian)

We saw this, for example, in
Google’s Al principles



Non-maleficence

Does no harm to anyone
Not the same as beneficence
(more egalitarian)

Face recognition



Autonomy

Respect autonomy of humans
(e.g. informed consent)

E.g. Google’s DUPLEX pretending to
be human



Justice

Benefits (& burdens) spread equally
Fairness
Respect existing laws

(e.g. algorithmic bias, racial and
other forms of discrimination)



Precautionary principle

When an activity raises threats of harm to
human health or the environment, precautionary
measures should be taken even if some cause
and effect relationships are not fully established
Scientifically

Enshrined in international law (e.g. EU law,
Kyoto protocol)



Precautionary principle

When an activity raises threats of harm to
human health or the environment, precautionary
measures should be taken even if some cause
and effect relationships are not fully established
Scientifically

Applies very well to uncertain impacts of Al
(especially on our mental health)



Only one new ethical challenge!
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Al lets us break things ...

Cheaper
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COMPAS tool




PAROLE DECISIONS [PNAS 108(17): 6889-6892]
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PAROLE DECISIONS [PNAS 108(17): 6889-6892]
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COMPAS tool




Famlly Criminality

The next few questions are about the family or caretakers that mainly raised you when growing up.

31. Which of the following best describes who principally raised you?
(] Both Natural Parents
) Natural Mother Only
) Natural Father Only
(] Relative(s)
() Adoptive Parent(s)
C Foster Parent(s)
V] Other arrangement
32. If you lived with both parents and later separated, how old were you at the time?
@ Less than 515 to 10 L) 11 to 14 L 15 or older L Does Not Apply

33.5u%xm(wmﬂmmmwwmm)mm,mmmm
Nol.iYes
34. Was your mother (or mother figure who principally raised you) ever arrested, that you know of?
MINo [ Yes
35. Were brothers or sisters ever arrested, that you know of?
CINo & Yes
36. Was your wife/husband/partner ever arrested, that you know of?
7 o [ ves
37.Did a or parent figure who raised you ever have a drug or alcohol problem?
& No [ Yes

38. Was one of your parents (or parent figure who raised you) ever sent to jail or prison?
& No [ ves



Residence/Stability

a.mmwdwmmmmm may be in mail)?
J No family C! vever [ Less than once/month [J Once per week ] Daily

55. How often have moved in the last twelve months?
Onever 21020305405+
56. Do you have a regular living situation (an address where you usually stay and can be reached)?
O no [ ves
57. How long have you been living at your current address?
1 0-5 mo. 1 6-11 mo. [0 1-3 yrs. [J 4-5 yrs. [J 6+ yrs.
58. Is there a telephone at this residence (a cell phone is an appropriate alternative)?
Cino B4 Yes
59. Can you provide a verifiable residential address?
O no ) Yes
60. How long have you been living in that community or neighborhood?
0o-2mo.[J 3-5mo. 00 6-11 mo. & 1+ yrs.
61. Do you live with family—natural parents, primary person who raised you, blood relative, spouse, children, or boy/gir
friend If iving together for more than 1 year?
O no 2 Yes
62. Do you live with friends?
“no C ves
63. Do you live alone?
& No [ ves
64. Do you have an alias (do you sometimes call yourself by another name)?
Eno [ yes



Lelsure/Recreation

— ————— —

Thinking of your lelsure time In the past few (3-6) months, how often did you have the following
faalinnc?

95. How often did you feel bored?
) Never I¥] Several times/mo (] Several times/wk [ Daily

96. How often did you feel you have nothing to do in your spare time?
) Never 71 Several times/mo [ Several times/wk (] Daily

97. How much do you agree or disagree with the following - You feel unhappy at times?
] Strongly Disagree () Disagree [} Not Sure [J Agree [ Strongly Agree

98. Do you feel at times?
(] strongly Disagree &7 Disagree () Not Sure [ Agree [ Strongly Agree

99. How much do you agree or disagree with the following -You are often restiess and bored?
(0 strongly Disagree &) Disagree [ Not Sure (] Agree [J Strongly Agree
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How to be more accurate than COMPAS

Ask random people
$1 reward + few sentences +
Mechanical Turk




How to be more accurate than COMPAS

Ask random people
$1 reward + few sentences +
Mechanical Turk

Use a simple classifier
Using 2 features: age, #priors




21 definitions of “fair”

Predicted
not guilty

Predicted
guilty

Not Guilty

True
Negative

False
Positive

Guilty

False
Negative

True
Positive



21 definitions of “fair”

For all groups, equal false positive

rate
Not Guilty | Guilty

FP/ (TN+FP) identical Predicted | True False
not guilty | Negative | Negative

Predicted | False True
guilty Positive | Positive

Percentage not guilty who are
incorrectly predicted guilty



21 definitions of “fair”

For all groups, equal false positive
rate
Not Guilty | Guilty

FP/ (TN+FP) identical Predicted | True False
not guilty | Negative | Negative

Predicted | False True
guilty Positive | Positive

Percentage not guilty who are
incorrectly predicted guilty

ProPublica’s complaint about
COMPAS



21 definitions of “fair”

For all groups, equal precision

TP/ (TP+FP) identical Not Guilty | Guilty

Predicted | True False
not guilty | Negative | Negative

Predicted | False True
guilty Positive | Positive

Percentage predicted guilty who
actually are quilty



21 definitions of “fair”

For all groups, equal precision

TP/ (TP+FP) identical Not Guilty | Guilty

Predicted | True False
not guilty | Negative | Negative

Predicted | False True
guilty Positive | Positive

Percentage predicted guilty who
actually are quilty

Northpointe’s defence of
“fairness”



21 definitions of “fair”

For all groups, equal opportunity

FN/ (TP+FN) identical Not Guilty | Guilty

Predicted | True False
not guilty | Negative | Negative

Predicted | False True
guilty Positive Positive

Percentage guilty who are
incorrectly predicted not guilty



21 definitions of “fair”

For all groups, treatment equality

FN/ FP identical Not Guilty | Guilty

Predicted | True False
not guilty | Negative | Negative

Ratio of incorrect gquilty predictions Predicted | False True
. o guilty Positive Positive
to not quilty predictions



21 definitions of “fair”

For all groups, equalized odds

TP/ (TP+FN) identical
FP / (FP+TN) identical

Percentage of quilty predicted
quilty, and of not guilty predicted not

quilty

Predicted
not guilty

Predicted
guilty

Not Guilty

True
Negative

False
Positive

Guilty

False
Negative

True
Positive



21 definitions of “fair”

Fairness through unawareness

Feature (e.g. race) not used to
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21 definitions of “fair”

Most definitions are mutually
incompatible

Unless prediction is 100%
accurate

Or groups are identical

E.g. false positive rate and
precision cannot both be equal!
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TECH INSIDER MONEY & MARKETS BRIEFING EXECUTIVE |

16 parts of China are now using Skynet, the
facial recognition tech that can scan the
country's entire population in a second

TARA FRANCIS CHAN
MAR 27, 2018, 1:42 PM

f FACEBOOK i LINKEDIN




m NEWS s:;;:;ey, NSW | change ~

3 Justin Politics World Business Sport Science Health Arts Analysis

& Print 62 Email ﬂ Facebook Twitter More

Facial recognition technology spots wanted man
in crowd of 60,000 Chinese concert-goers

By Tracey Shelton
Updated 17 Apr 2018, 9:30pm




Attack text label iPod
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iPod 0.4%
library 0.0%
pizza 0.0%
. toaster 0.0%
dough 0.1%
Granny Smith 0.1%
library 0.0%
pizza 0.0%
toaster 0.0%
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Stop Yield Speed Limit
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Google

professors are X

-(.

professors are mean
professors are doctors
professors are prejudiced too
professors are overrated
professors are burning out
professors are overpaid
professors are rude
professors are bad teachers

professors are puzzled by rubik's cube

Google Search I'm Feeling Lucky

Report inappropriate predictions



Go

climate change is not real
climate change is a hoax
climate change is real
climate change is a myth

climate change is |

Google Search

g Australia

I'm Feeling Lucky

Report inappropriate predictions



Al lets us break things ...

Cheaper




Go

professors are losers
professors are useless
professors are overpaid
professors are liberal

professors are |

Google Search

g Australia

I'm Feeling Lucky

(=

Report inappropriate predictions



Go

climate change is not real
climate change is a hoax
climate change is real
climate change is a myth

climate change is |

Google Search

g Australia

I'm Feeling Lucky

Report inappropriate predictions



Only one new ethical challenge!
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It 1S not
Terminator!
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Artificialintelligence - Musk, Wozniak and Hawking urge ban
on warfare Al and autonomous weapons

More than 1,000 experts and leading robotics researchers sign open letter
warning of military artificial intelligence arms race

Samuel Gibbs

Monday 27 July 2015 11.18 BST
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Sydney professor and Elon Musk lead call for United
Nations to ban lethal autonomous weapons

ELON Musk has joined 116 robotic and artifical intelligence founders to call for a ban on these lethal weapons or
velcome a “terrifying future”.

ﬁ Nick Whigham W @NWWHIGHAM « «NEeWS @ AygusT 21,2017 10:06AM
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Echo Voyagf under the sea




_— » g

T

ns of terror

—— ————— —




we.apons of mass
destr ctlon

v""

LA "






Robots will be
more efficient




Robots will be
more ethical




Robots can just
fight robots




These technologles
already exist "




Bans don’t work




The UN is (slowly) moving
720\

7
/0 nations just called for \y P\}

action at General \‘“A &1/
Assembly ...
Umted Nations




The UN is (slowly) moving

The following film explains \‘]V/ \

some reasons why we »
don’t have long ... \‘“A &1‘//

Umted Nations




| " INCREASE IN VIOLENT CRIME



Many problems, many solutions

echnological ~ conomic

Social



What we need

Multi-disciplinary research
(fairness, verifiability, ...)



What we need

Public debate




What we need

VoA

Education




What we need

Policy (e.g. regulation) 1 >
Informed by independent experts ‘
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