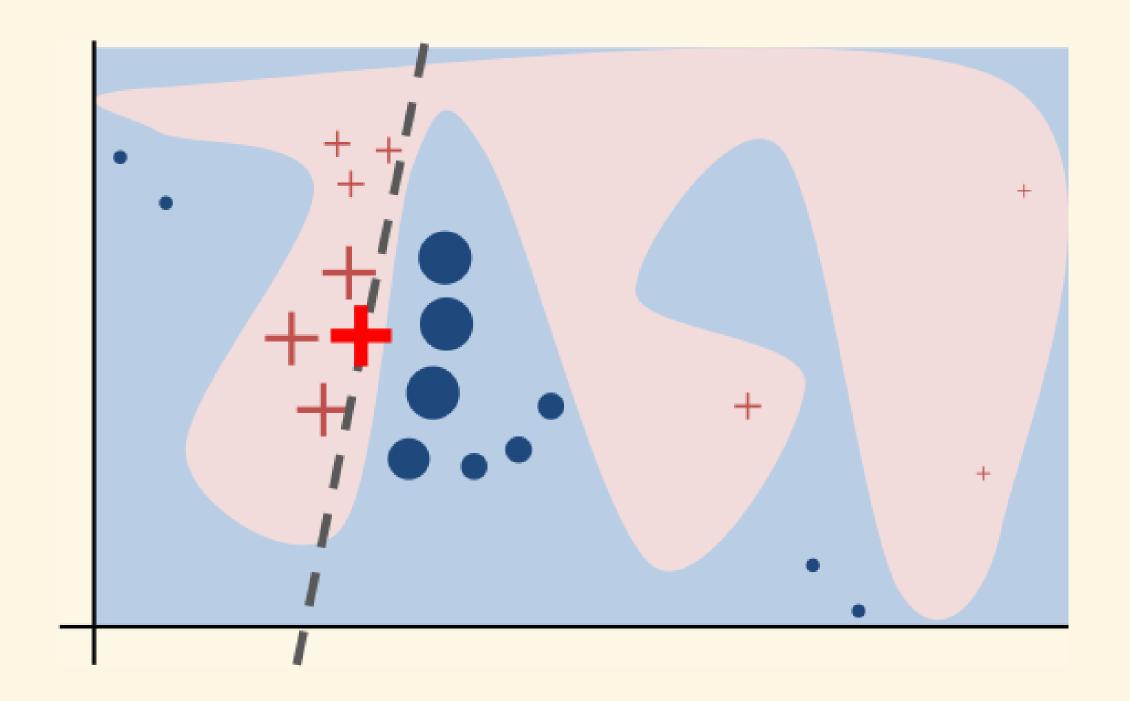
Case Study: Surrogates

The Universal Explainers

Kacper Sokol



(Ribeiro et al., 2016. "Why should I trust you?" Explaining the predictions of any classifier)

Benefits

- Model-agnostic work with any black box
- Post-hoc can be retrofitted into pre-existing predictors
- Data-universal work with image, tabular and text data because of interpretable data representations

No Free Lunch

Perspective | Published: 13 May 2019

Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

Cynthia Rudin ⊠

Nature Machine Intelligence 1, 206–215 (2019) | Cite this article

41k Accesses | 476 Citations | 290 Altmetric | Metrics

Abstract

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing problems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.

No Free Lunch

Perspective | Published: 13 May 2019

Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

Cynthia Rudin ⊠

Nature Machine Intelligence 1, 206–215 (2019) | Cite this article
41k Accesses | 476 Citations | 290 Altmetric | Metrics

Abstract

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing problems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.

- Post-hoc explainers have poor fidelity
- A **generic** eXplainable Artificial Intelligence process is *beyond our reach* at the moment

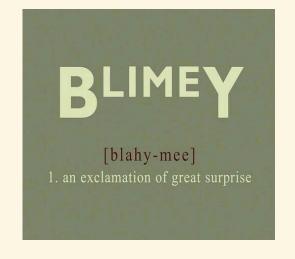
bLIMEy, there has to be a better way...

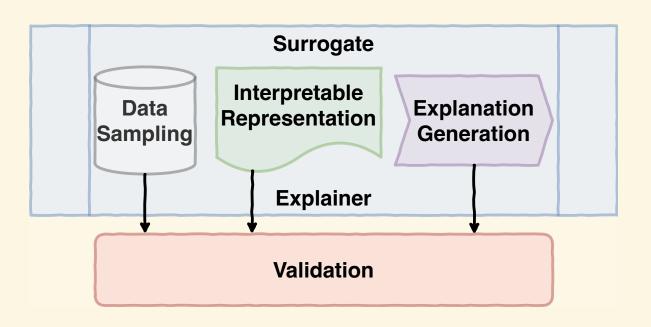
bLIMEy \rightarrow build LIME yourself (Sokol et al., 2019. bLIMEy: Surrogate prediction explanations beyond LIME)

- Framework for building surrogate explainers
- Meta-algorithm for operationalising them
- Accompanied by analysis of surrogate building blocks (akin to a user guide)
- Practical recommendations

Good news: A means to build flexible, faithful, interactive, ... surrogates

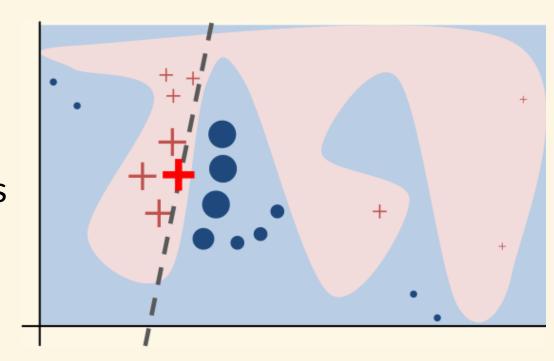
Not so good news: It requires effort





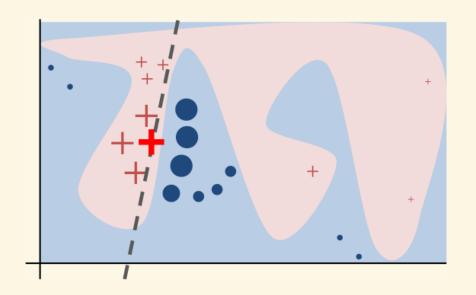
Operationalising surrogates

- To use surrogates, we need to understand
 - their provenance
 - how to (correctly) interpret their explanations
- To **build** surrogates, we should
 - choose suitable building blocks
 - evaluate & validate these



Surrogate Image Explainers

Image surrogates (LIME)



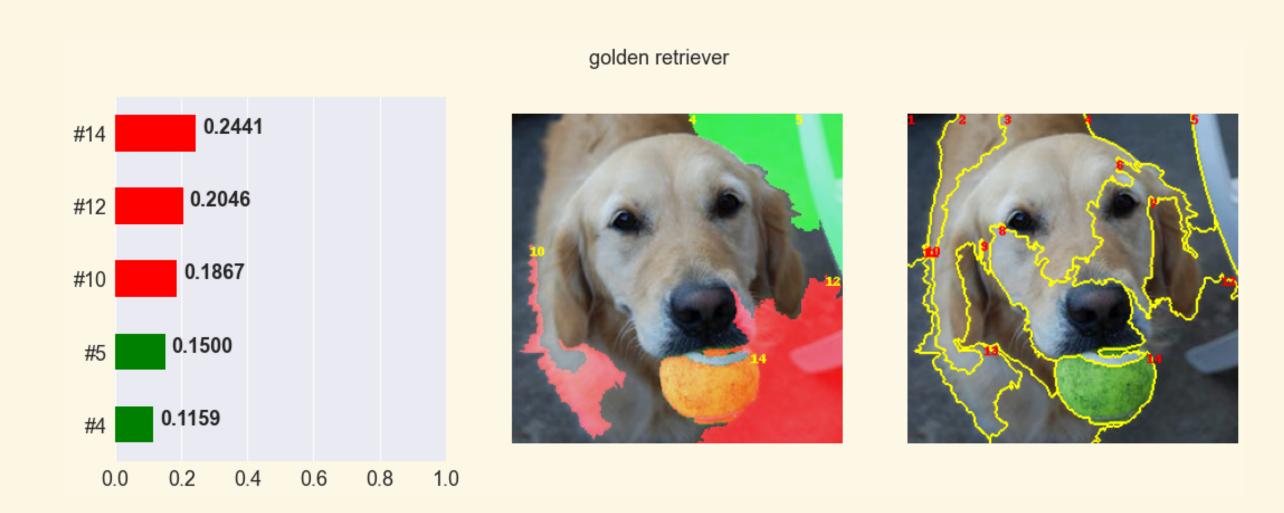
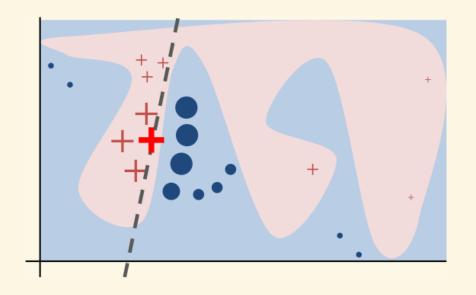
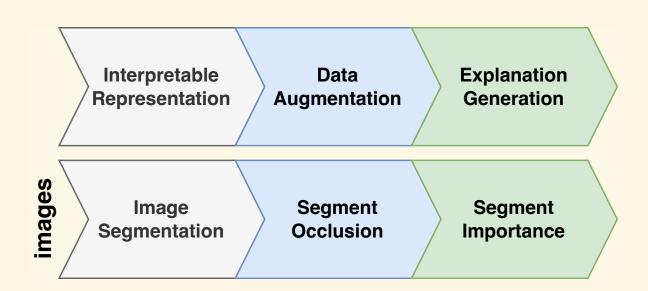
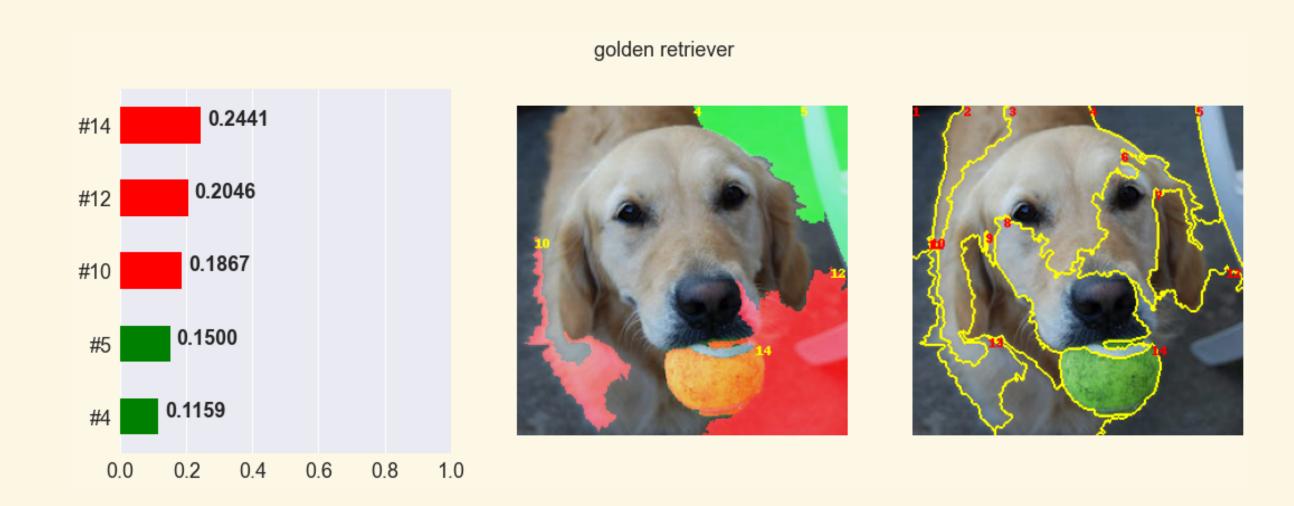


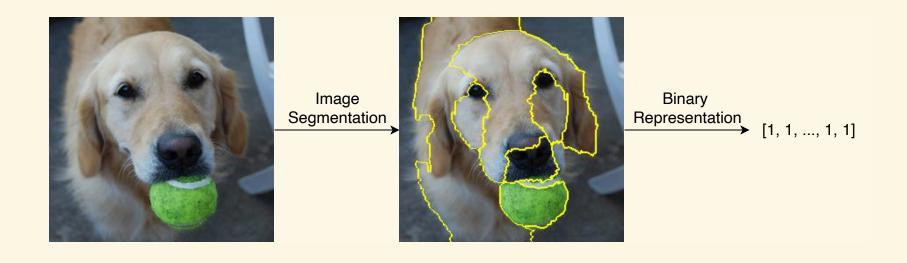
Image surrogates (LIME)

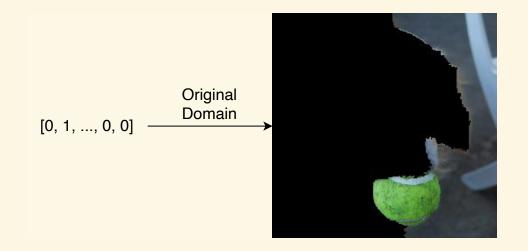




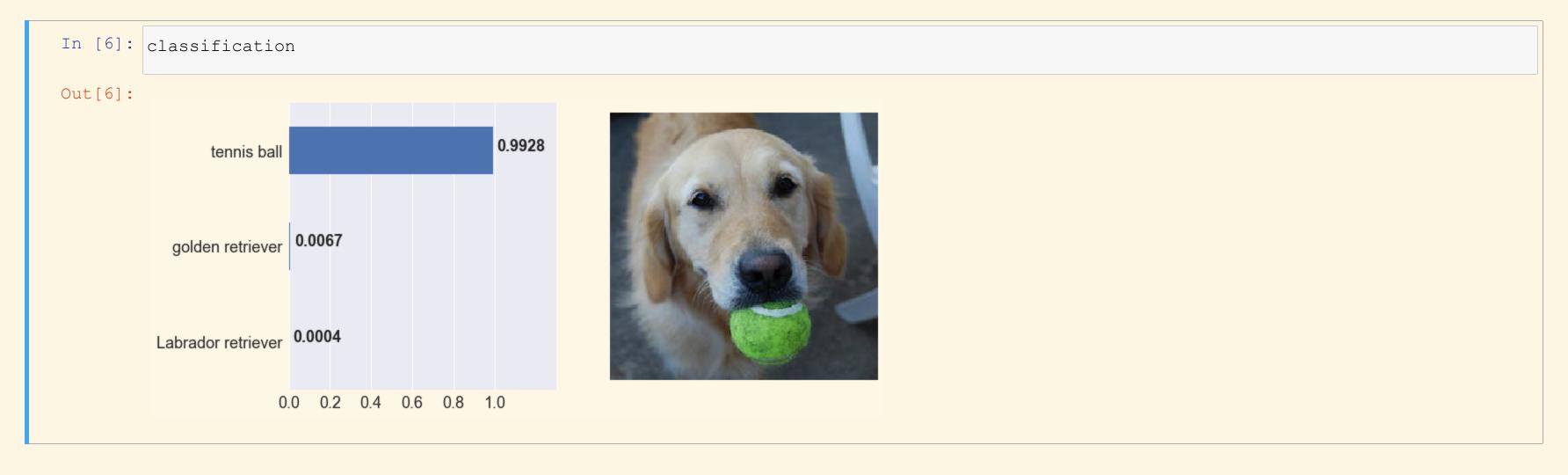


Segmentation-based interpretable representation

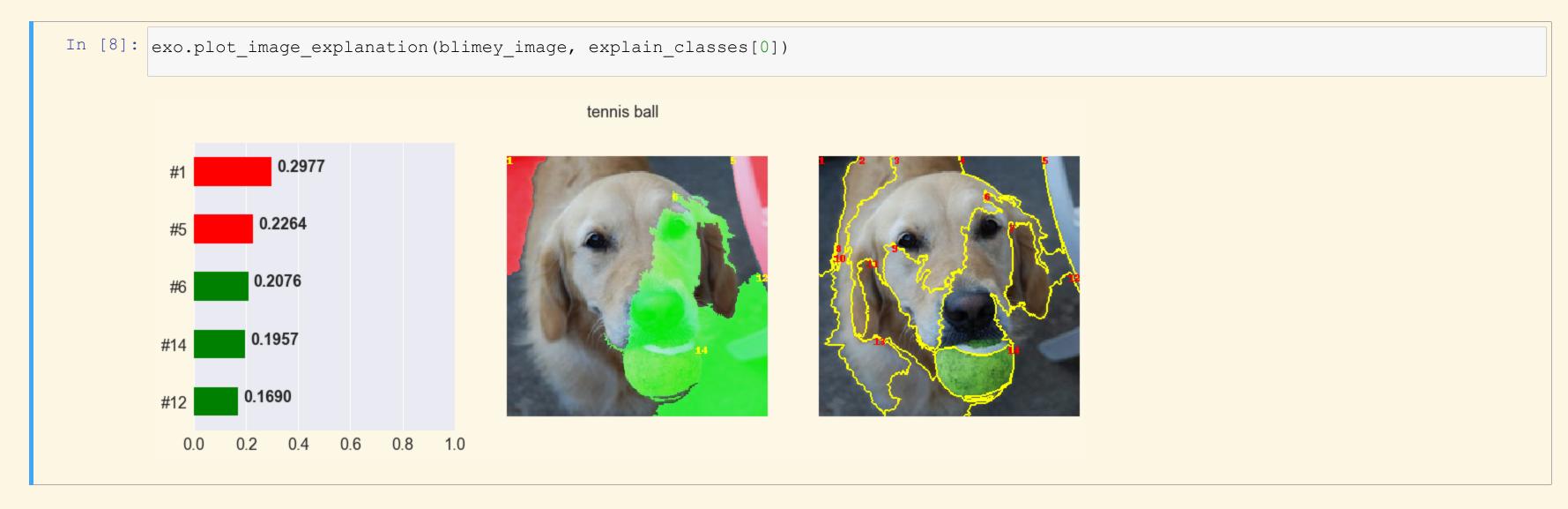




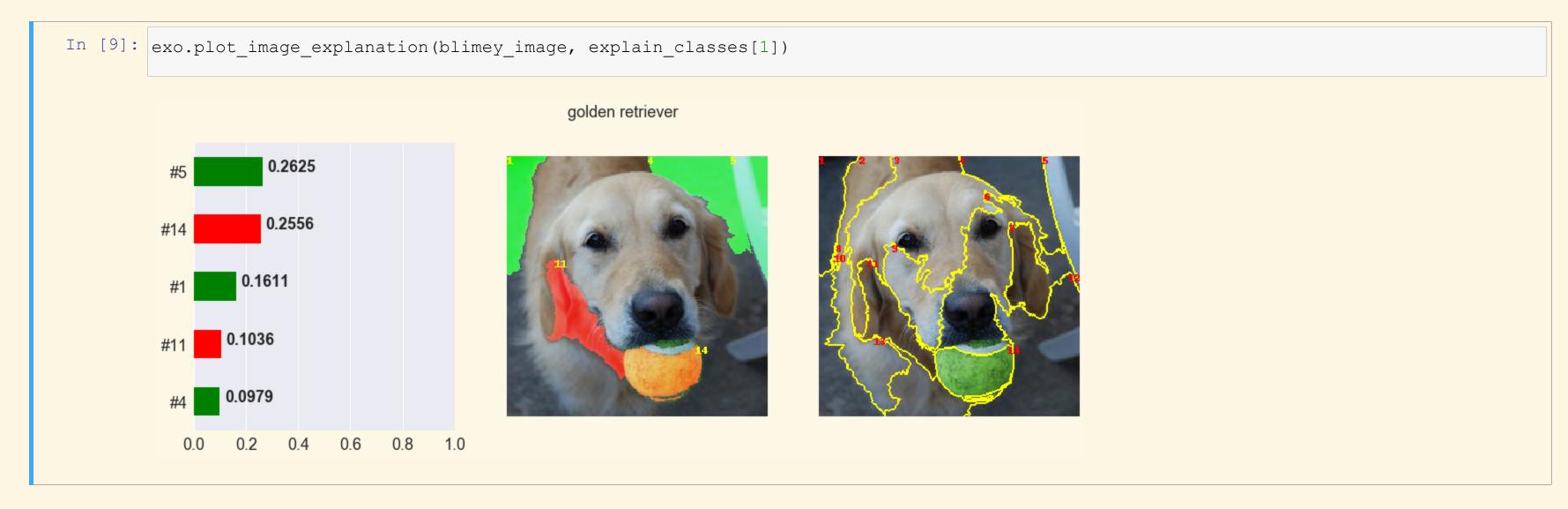
Black-box prediction



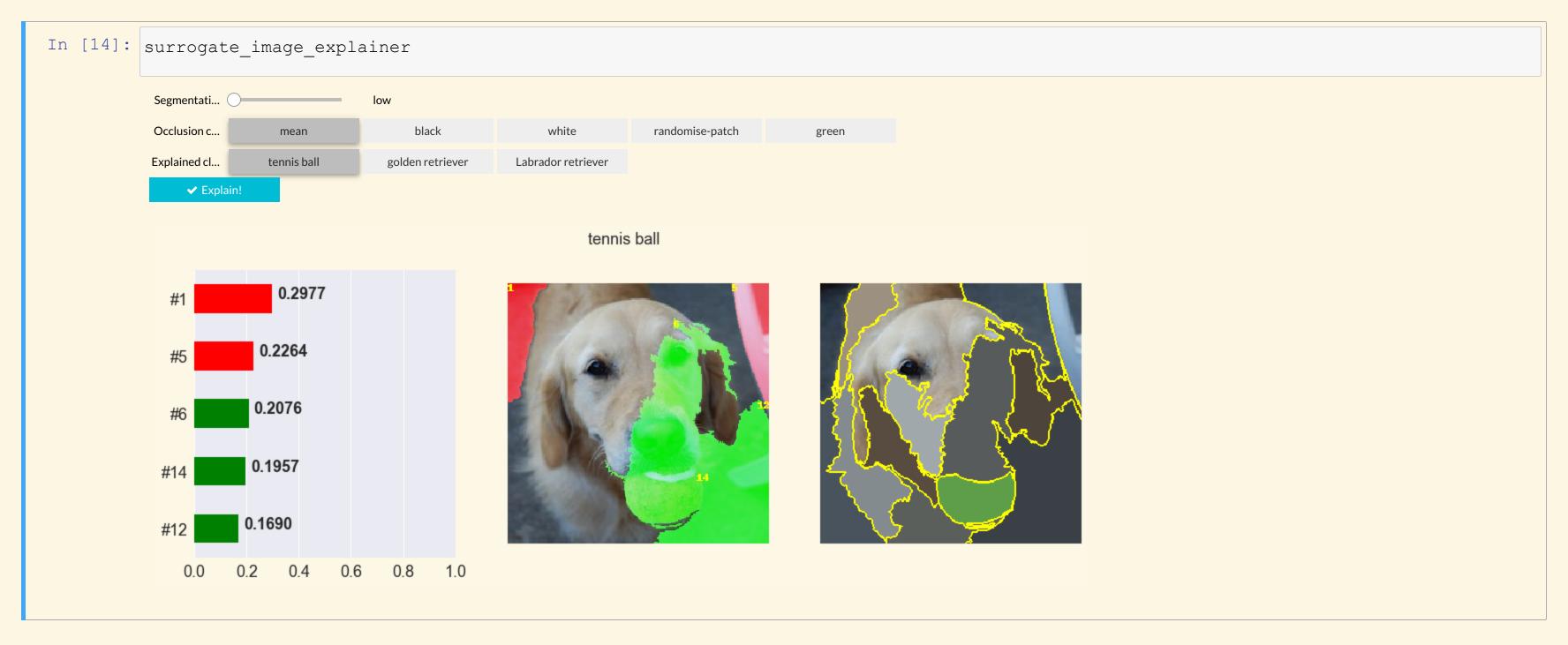
Prediction explanation



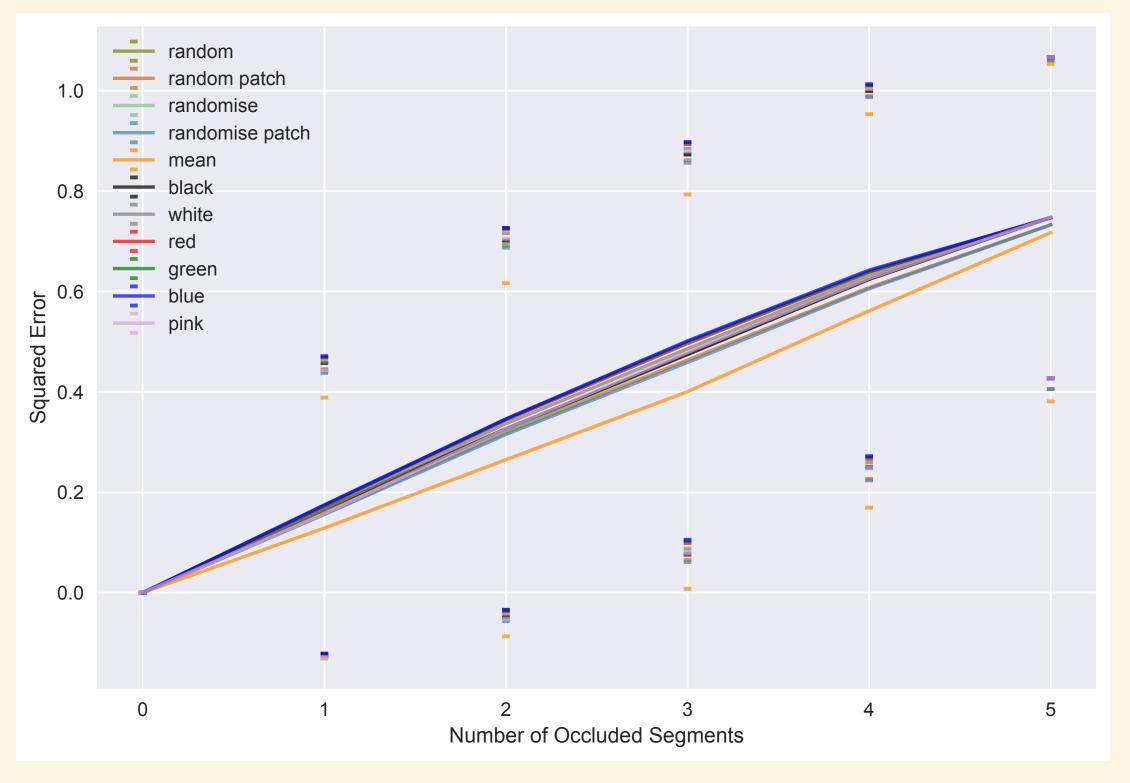
Prediction explanation



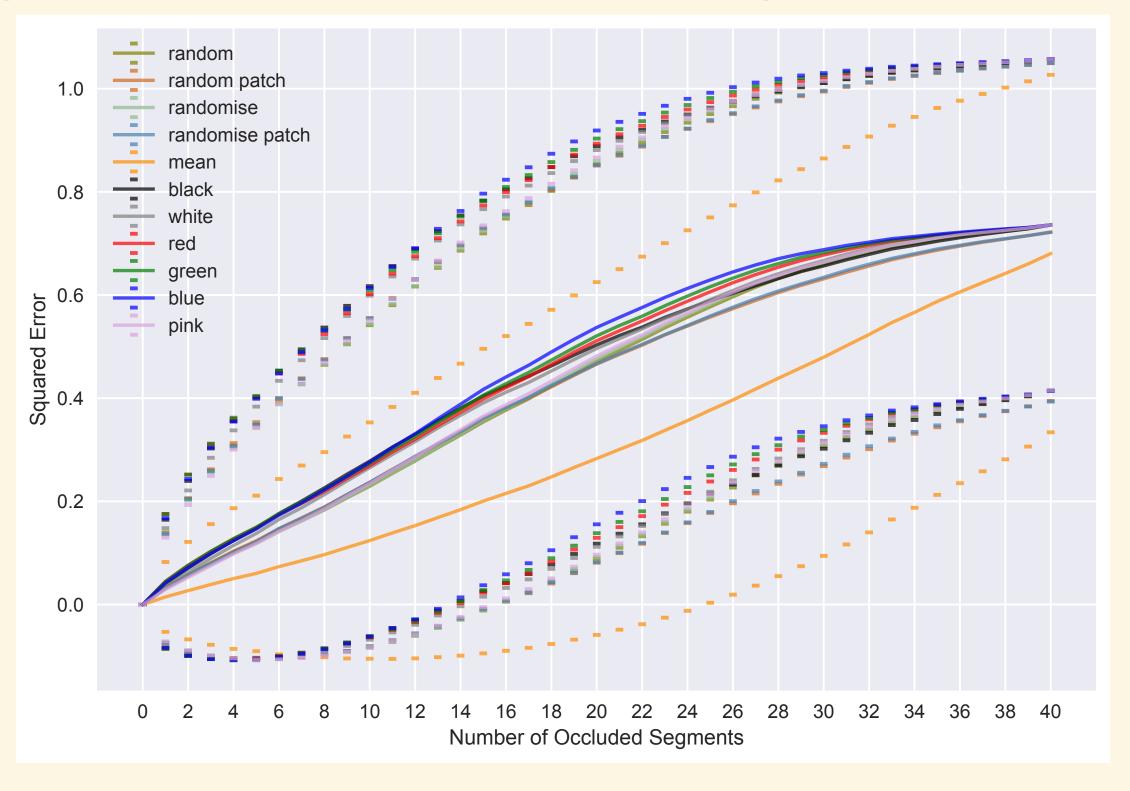
Explainer demo



Segmentation granularity and occlusion colour – 5 segments

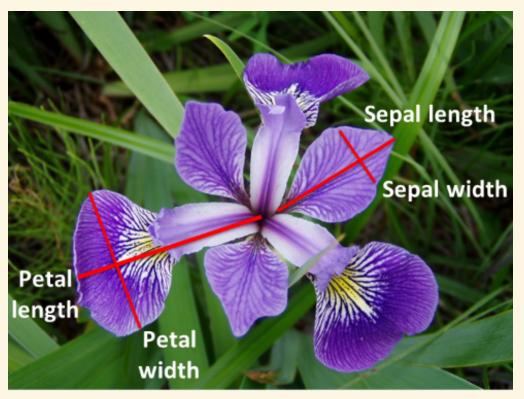


Segmentation granularity and occlusion colour – 40 segments

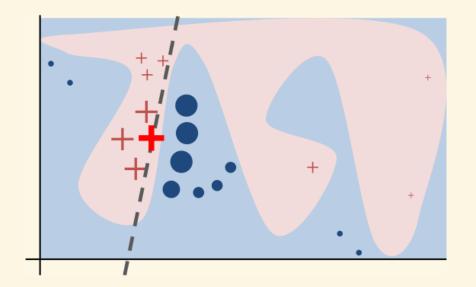


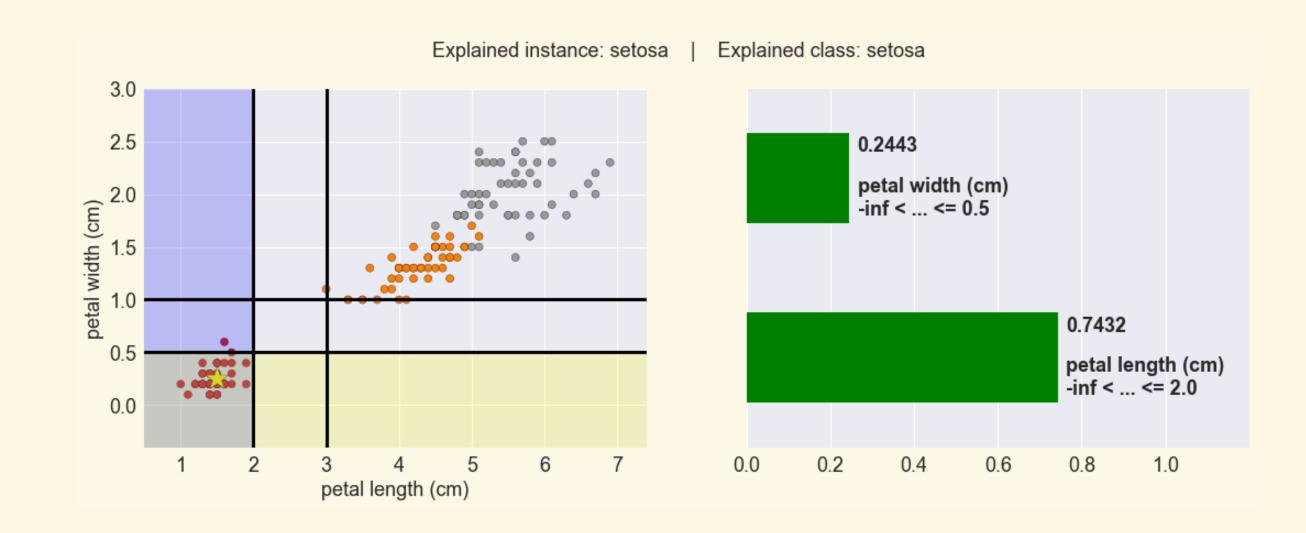
Surrogate Explainers of Tabular Data

Classifying iris flowers

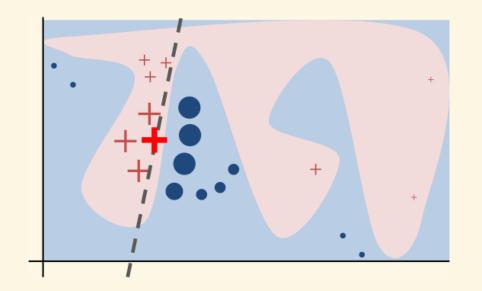


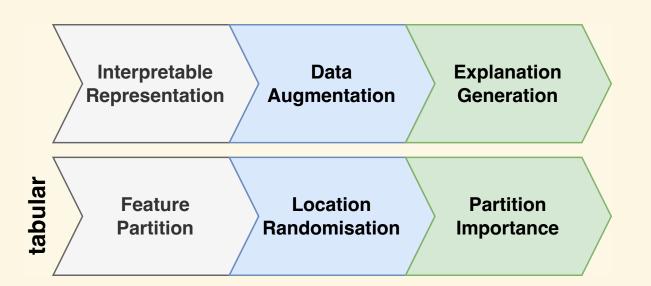
Tabular surrogates (LIME)

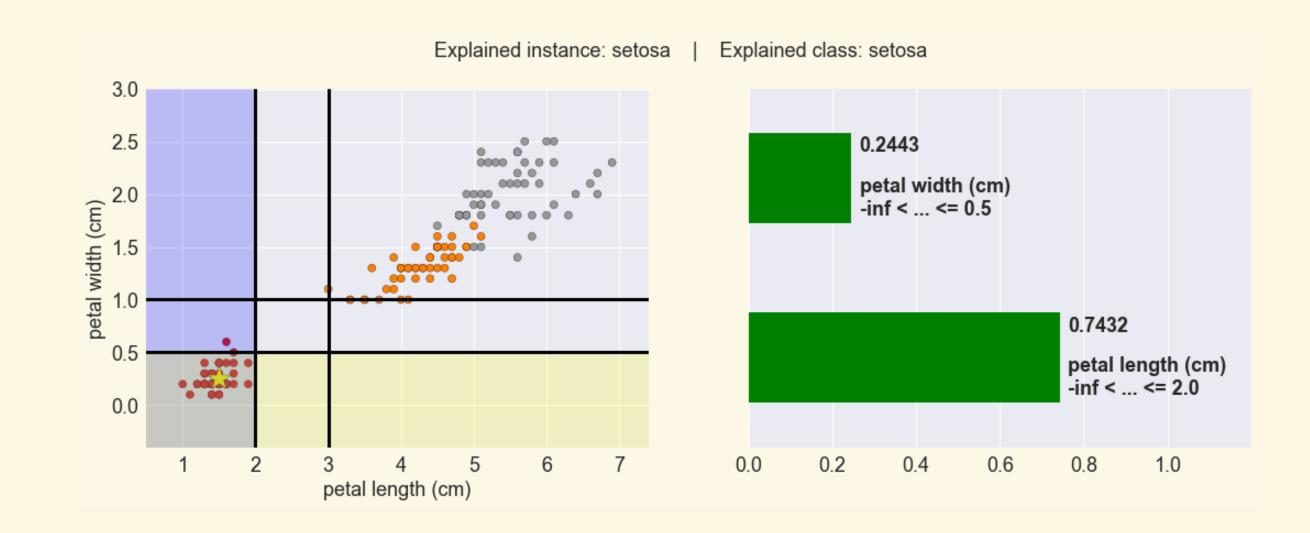




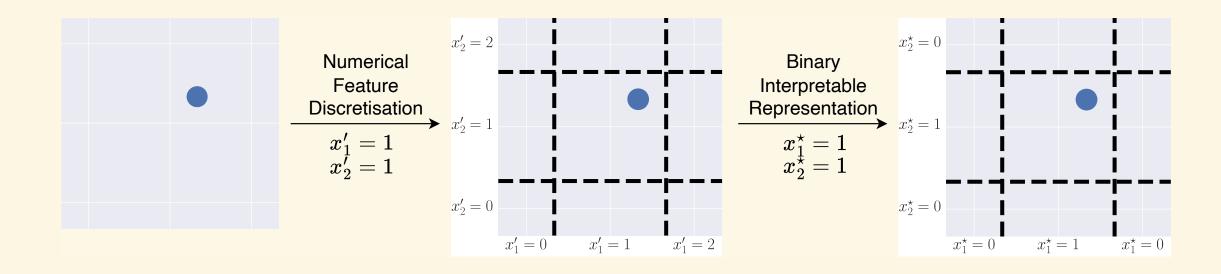
Tabular surrogates (LIME)

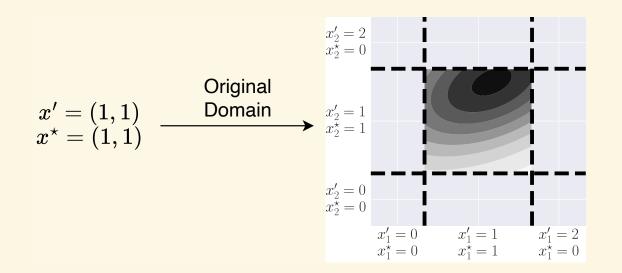




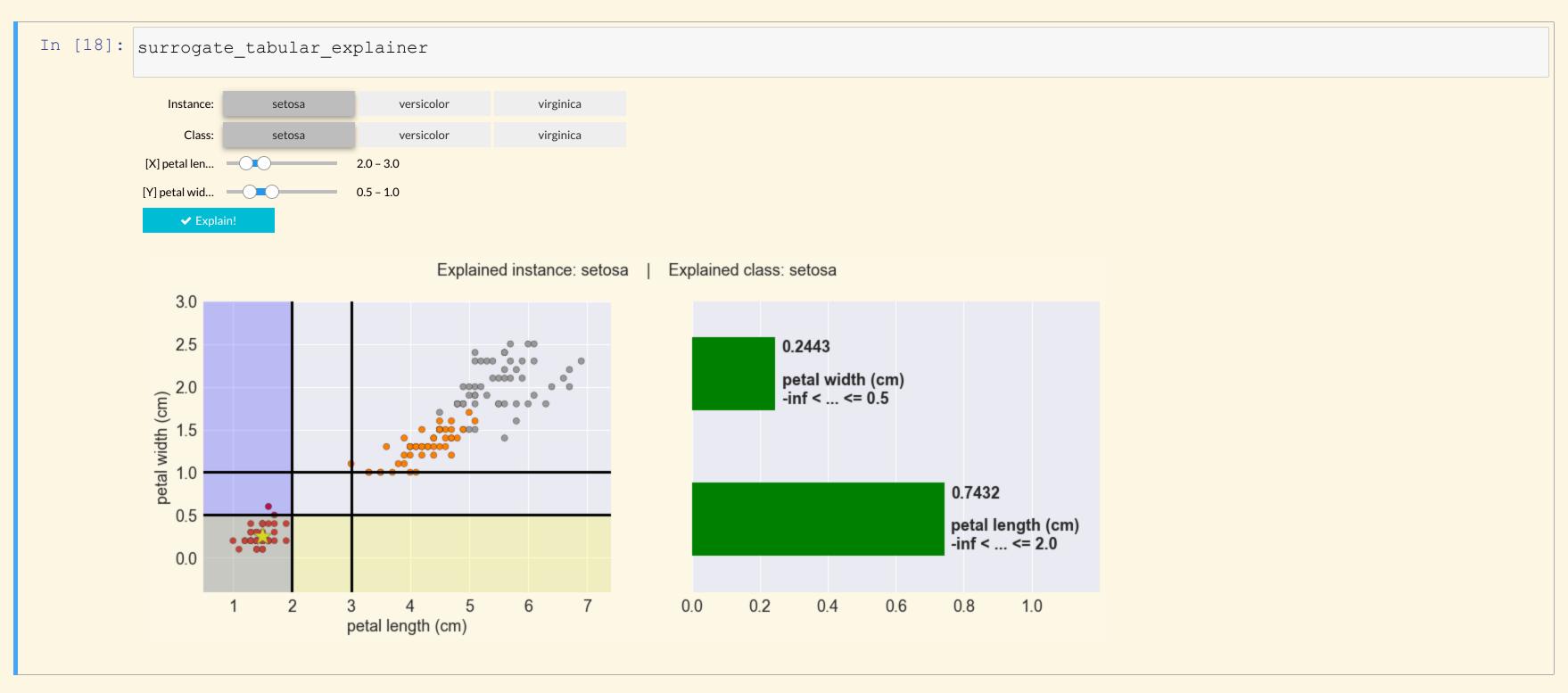


Interpretable representation

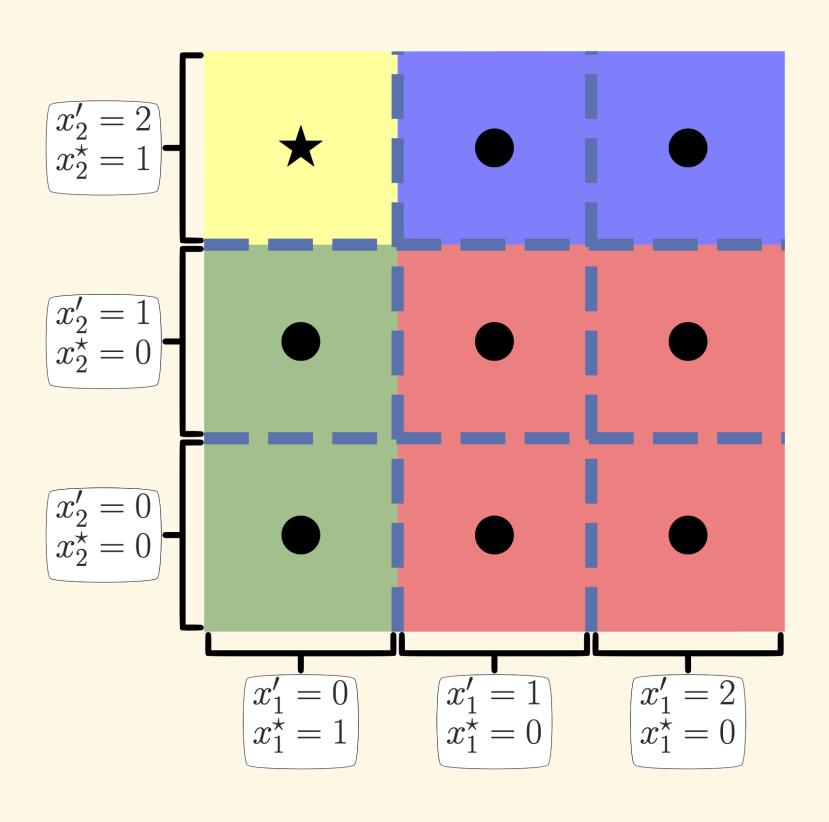




Explainer demo

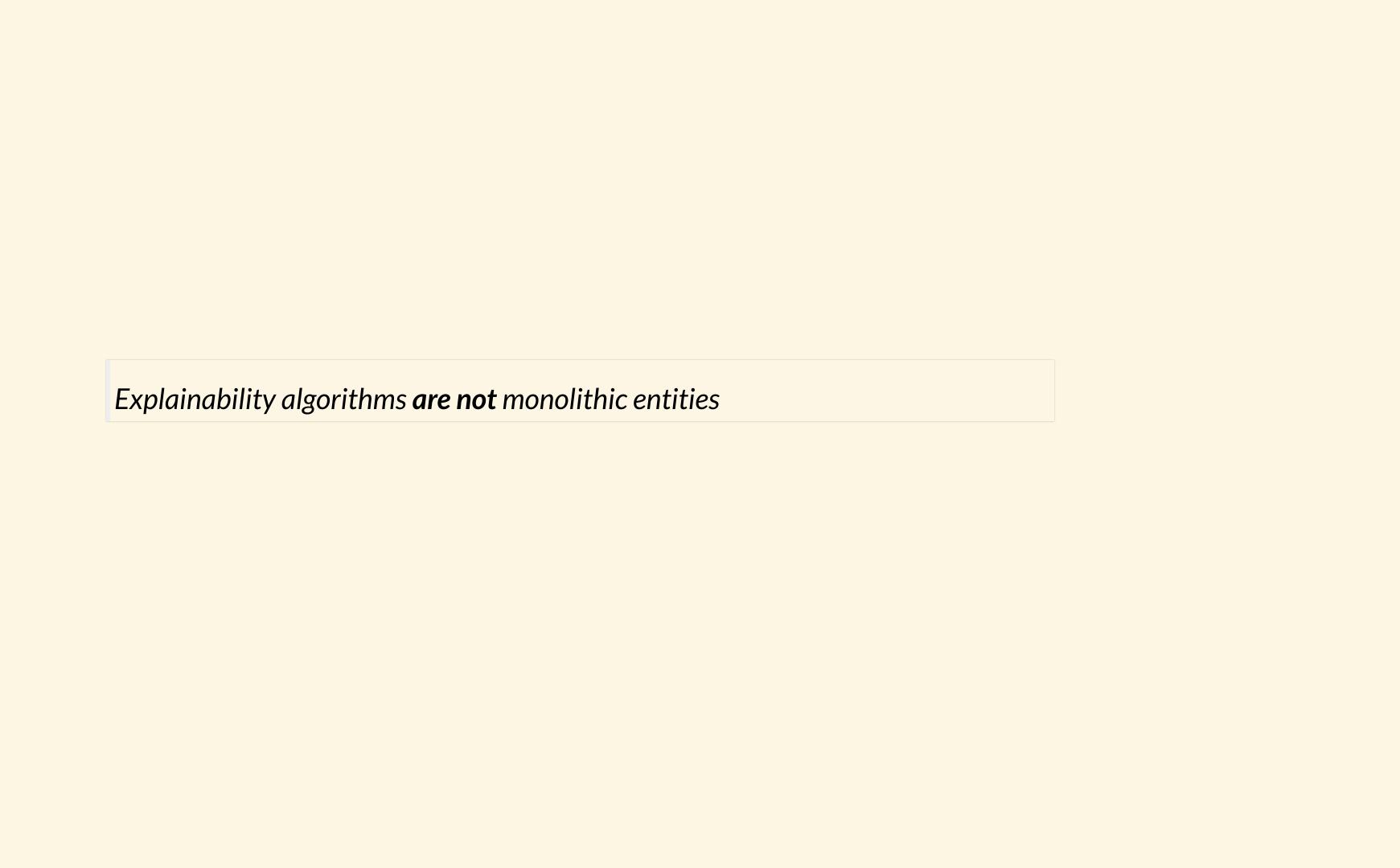


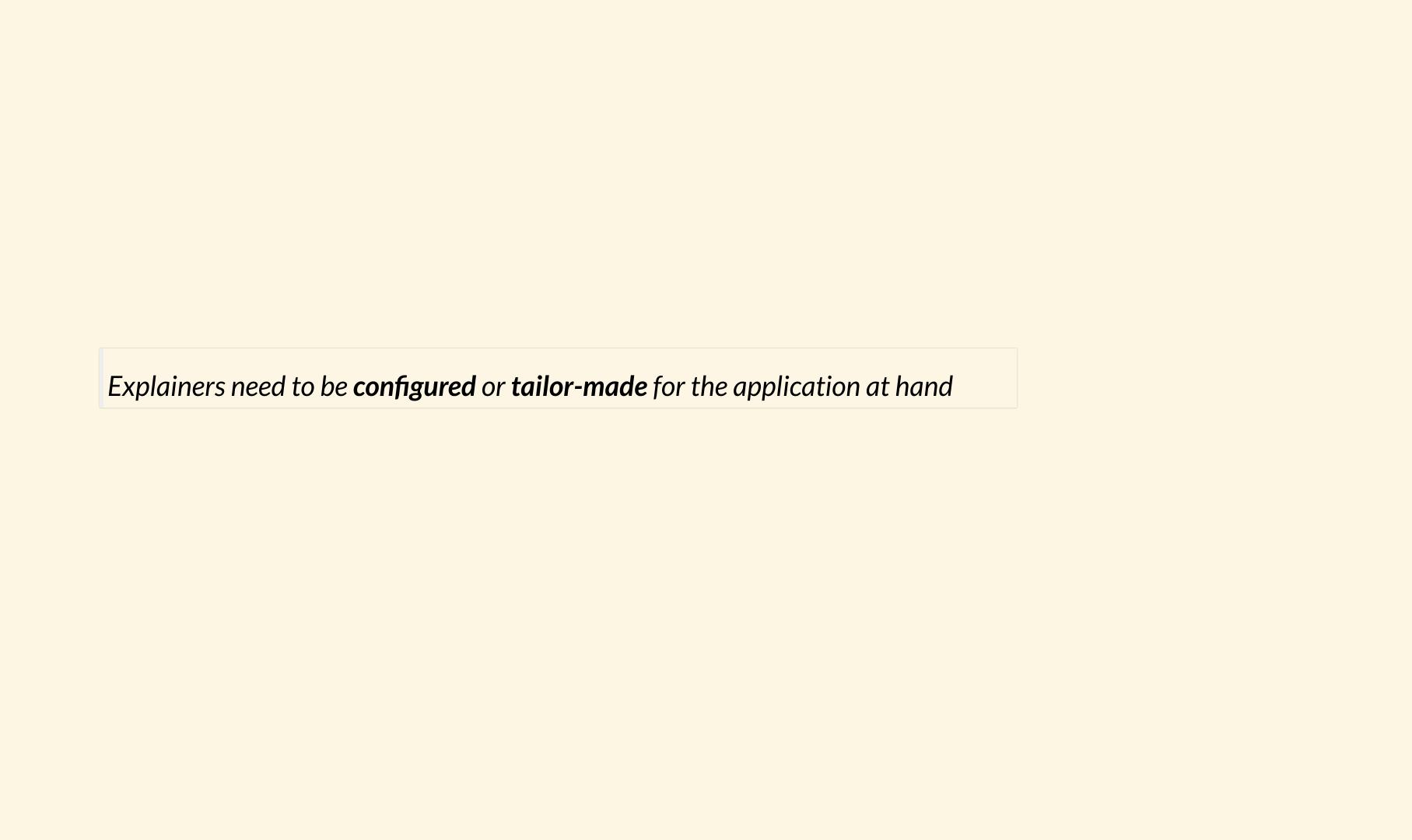
But why? Meaning of the explanations



But why? Meaning of the explanations (ctd.)

Take-home Messages





These are **diagnostic tools** that only become **explainers** when their provenance, caveats, properties and outputs are well-understood

Do we really need to use complex methods to solve the problem at hand?

- AI
- ML
- DL
- [insert the name of a new technology]

Where to Go from Here

FAT Forensics < https://fat-forensics.org/>

- A modular Python toolkit for algorithmic Fairness, Accountability and **Transparency**
- Aimed at both end-users and domain experts
- Built for research and deployment

- Sokol et al., 2020. FAT Forensics: A Python toolbox for implementing and deploying fairness, accountability and transparency algorithms in predictive systems
- Sokol et al., 2022. FAT Forensics: A Python toolbox for algorithmic fairness, accountability and transparency

ECML-PKDD 2020 hands-on explainability tutorial

Tutorial resources: https://events.fat-forensics.org/2020_ecml-pkdd

• Sokol et al., 2020. What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components

Extra resources

- 2021 TAILOR Summer School session
- University of Bristol Centre for Doctoral Training in Interactive Artificial Intelligence BIAS Summer
 School session
- 2021 The Alan Turing Institute's AI UK

• ...

- https://events.fat-forensics.org/
- https://github.com/fat-forensics/resources

Self-paced online learning materials

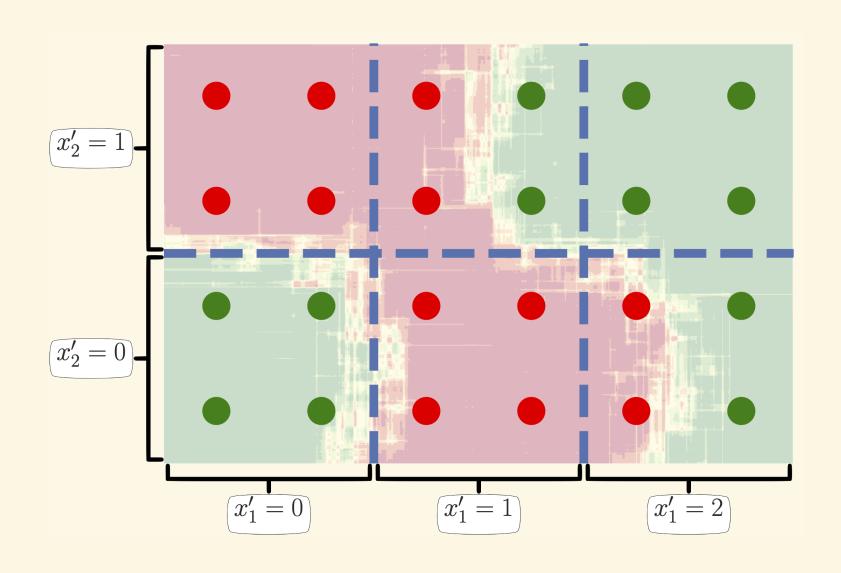
- Interactive online training resources on interpretability, explainability and transparency
- To be published in *late 2022 / early 2023*

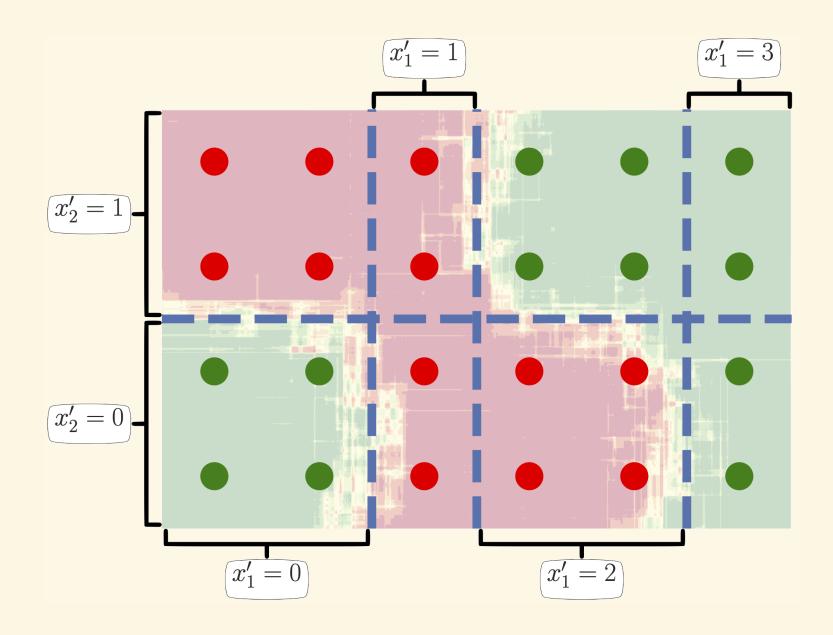
PhD / Master's Course materials

- Comprehensive overview of interpretability, explainability and transparency
- To be published *sometime* in 2023
- (Possibly transformed into a MOOC later in the year)

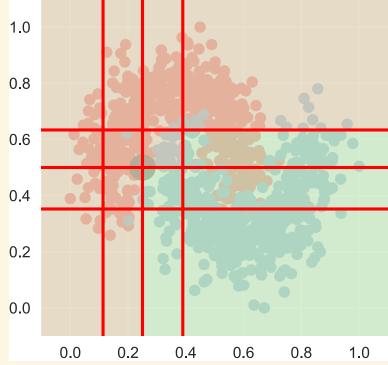
Helpers

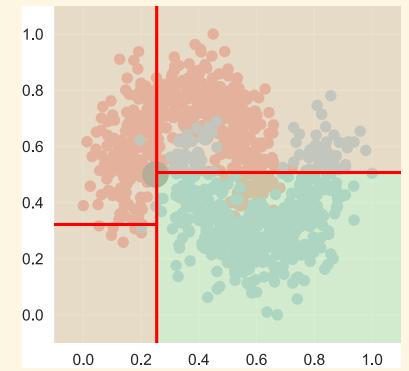
Feature partition





Feature partition (ctd.)





Sampling

