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The Universal Explainers















LIME: Local Interpretable Model-agnostic Explanations



(Ribeiro et al., 2016. "Why should I trust you?" Explaining the predictions of any classifier)



Benefits
Model-agnostic – work with any black box

Post-hoc – can be retrofitted into pre-existing

predictors

Data-universal – work with image, tabular and

text data because of interpretable data

representations








No Free Lunch





No Free Lunch

 







Post-hoc explainers have poor fidelity

A generic eXplainable Artificial Intelligence

process is beyond our reach at the moment
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bLIMEy, there has to be a better way...
bLIMEy → build LIME yourself

(Sokol et al., 2019. bLIMEy: Surrogate prediction explanations beyond LIME)

Framework for building surrogate explainers

Meta-algorithm for operationalising them

Accompanied by analysis of surrogate building blocks (akin to a user guide)

Practical recommendations

Good news: A means to build flexible, faithful, interactive, ... surrogates

Not so good news: It requires effort



Operationalising surrogates



To use surrogates, we need to understand

their provenance

how to (correctly) interpret their explanations

To build surrogates, we should

choose suitable building blocks

evaluate & validate these



Surrogate Image Explainers



Image surrogates (LIME)





Image surrogates (LIME)
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Segmentation-based interpretable representation
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Black-box prediction
In [6]:

Out[6]:

classification



Prediction explanation
In [8]: exo.plot_image_explanation(blimey_image, explain_classes[0])



Prediction explanation
In [9]: exo.plot_image_explanation(blimey_image, explain_classes[1])



Explainer demo
In [14]:

Segmentati… low

Occlusion c… mean black white randomise-patch green

Explained cl… tennis ball golden retriever Labrador retriever

 Explain!

surrogate_image_explainer



Segmentation granularity and occlusion colour – 5 segments
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Segmentation granularity and occlusion colour – 40 segments
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Surrogate Explainers of Tabular Data



Classifying iris flowers



Tabular surrogates (LIME)





Tabular surrogates (LIME)
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Interpretable representation
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Explainer demo
In [18]:

Instance: setosa versicolor virginica

Class: setosa versicolor virginica

[X] petal len… 2.0 – 3.0

[Y] petal wid… 0.5 – 1.0

 Explain!

surrogate_tabular_explainer



But why? Meaning of the explanations





But why? Meaning of the explanations (ctd.)







Take-home Messages



Explainability algorithms are not monolithic entities



Explainers need to be configured or tailor-made for the application at hand



These are diagnostic tools that only become explainers when their

provenance, caveats, properties and outputs are well-understood



Do we really need to use complex methods to solve the problem at hand?

AI

ML

DL

[insert the name of a new technology]



Where to Go from Here



FAT Forensics < >



A modular Python toolkit for algorithmic Fairness, Accountability and Transparency

Aimed at both end-users and domain experts

Built for research and deployment 






Sokol et al., 2020. FAT Forensics: A Python toolbox for implementing and deploying fairness, accountability

and transparency algorithms in predictive systems

Sokol et al., 2022. FAT Forensics: A Python toolbox for algorithmic fairness, accountability and transparency

https://fat-forensics.org/

https://fat-forensics.org/


ECML-PKDD 2020 hands-on explainability tutorial





Tutorial resources: 







Sokol et al., 2020. What and How of Machine Learning Transparency: Building Bespoke Explainability Tools

with Interoperable Algorithmic Components

https://events.fat-forensics.org/2020_ecml-pkdd

https://events.fat-forensics.org/2020_ecml-pkdd


Extra resources





2021 TAILOR – Summer School session

University of Bristol Centre for Doctoral Training in Interactive Artificial Intelligence – BIAS Summer

School session

2021 The Alan Turing Institute's AI UK

…




https://events.fat-forensics.org/

https://github.com/fat-forensics/resources

https://events.fat-forensics.org/
https://github.com/fat-forensics/resources


Self-paced online learning materials



Interactive online training resources on interpretability, explainability and transparency

To be published in late 2022 / early 2023

PhD / Master's Course materials



Comprehensive overview of interpretability, explainability and transparency

To be published sometime in 2023

(Possibly transformed into a MOOC later in the year)



 



Helpers



Feature partition










Feature partition (ctd.)
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